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Abstract

In the work reported herein, we investigate the practicality of a recently introduced variant of a general
phase-sensitive method in small-angle neutron scattering that attempts to address the loss of phase-
information as well as the orientational averaging simultaneously—through the use of reference
structures in conjunction with finite element analysis. In particular, one possible physical realization
of this approach is to employ polarized beams together with a magnetic reference connected to the
sample object. We report on a first such practical implementation by successfully recovering the
structure of a core—shell nanoparticle system.

1. Introduction

In typical diffraction experiments information about the phase of the scattered wave is lost because the measured
quantity is the squared modulus of the structure factor and not the structure factor itself. The loss of phase
information leads to ambiguity in structure determination from diffraction data. This so-called phase problem
is arguably the biggest problem in diffraction experiments. Methods such as isomorphic substitution of atoms in
crystals, resonant x-ray scattering at synchrotrons, and hydrogen-deuterium substitution for neutrons have
been developed in addition to the techniques introduced by Hauptmann and Karle for x-ray crystallography

[1, 2] to overcome the phase-problem. Some of these methods are reviewed in a work by Taylor [3]. These
methods, however, are in general only suitable for certain types of samples (e.g., crystals, non-light elements), or
the sample has to be changed to perform the experiment, or both.

In polarized specular neutron reflectivity a method has been developed to obtain both amplitude and phase
of the wave reflected from a thin film structure using a magnetic reference layer and a polarized neutron beam,
enabling an unambiguous determination of the scattering length density (SLD) profile normal to the film surface
[4-7]. In the method developed for specular neutron reflectometry, it was necessary to formulate a first-
principles method in terms of a solution of the Schroedinger wave equation since the reflectivity at low values of
wavevector transfer Q in the neighborhood of the critical angle for total external reflection can be sufficiently
large that the typically applied Born approximation is no longer valid.

In the interest of further developing and possibly improving upon the basic concept of employing reference
structures to extract phase information, a variation of such a technique was introduced [8] for dilute-solution
small-angle neutron scattering (SANS) in which: (1) a reference object is attached externally to the sample object
of incompletely known structure in a specific orientation and at a particular position; (2) two independent
scattering experiments are then performed, one for an ensemble of composite objects with reference part ‘A’ and
the other with reference part ‘B>—the sample part of each object being the same; and (3) the data is analyzed in
terms of the unknown part of the sample structure rendered into finite elements of arbitrarily-sized volume. As
was shown in [8], the incrementally different method for phase determination introduced therein recovers, in

© 2018 The Author(s). Published by IOP Publishing Ltd


https://doi.org/10.1088/2399-6528/aadf5f
https://orcid.org/0000-0003-4377-8747
https://orcid.org/0000-0003-4377-8747
mailto:E.Brok@NBI.KU.DK
http://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/aadf5f&domain=pdf&date_stamp=2018-09-19
http://crossmark.crossref.org/dialog/?doi=10.1088/2399-6528/aadf5f&domain=pdf&date_stamp=2018-09-19
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0

10P Publishing

J. Phys. Commun. 2 (2018) 095018 E Brok et al

sample

D

|
I
|

reference (N

Figure 1. Two-dimensional composite structure depicted in which the unknown part of the structure is rendered in finite element
form, each element having a constant SLD value. The reference part can be of any SLD distribution that satisfies the requisite
requirements relating to symmetry and relative size (for a particular level of sensitivity) so long that it is completely known. In the
example calculations in equations (9)—(16) only the first four squares are used but in general the sample is decomposed into L by M
squares.

principle, the sought after phase information and, in addition, simultaneously retrieves information lost to
orientational averaging of the sample objects because of their random orientations when suspended in a liquid
environment. The latter orientational information can be extracted because there exists a fixed relationship
between sample and reference in the specific type of configuration employed in this method.

In essence, the phase-sensitive method that is investigated experimentally here differs in one key aspect from
amore conventional isomorphic substitution (in crystallography) or contrast variation (in small-angle
scattering). Instead of isomorphically replacing atom ‘A’ at a known location within a unit cell with an atom of
type ‘B>—or effectively changing the contrast or SLD of one portion of a system containing a ferromagnetic
component through the use of polarized beams (see e.g., [9])—and performing a conventional analysis of the
two composite system (unknown part plus reference segment) scattering data sets, the fundamental manner in
which the composite system data are analyzed is reformulated as originally introduced in [8]. A synopsis of that
reformulated analysis is given below as a more quantitative description of the basic idea.

Imagine, for simplicity, the two-dimensional composite structure depicted in figure 1 in which the
‘unknown’ part of the structure is rendered in finite element form, the constant SLD values of each element to be
determined through an analysis of two composite small-angle scattering data sets each corresponding to the
common unknown part of interest plus one of two known reference parts. Then, following the original
description in [8], we assume a collection of identical such objects, randomly oriented, in the dilute solution
limit (negligible inter-particle correlations). The structure factor for any one of the identical objects in the
ensemble, averaged over all possible angular orientations, is proportional to a differential scattering cross
section. Note that we use the term ‘structure factor’ for the structure of an object as it is conventionally done in
general scattering theory and not the term ‘form factor’ usually used in the small-angle scattering community.
For the purposes of this discussion, we can neglect sample volume normalization factors and set the SLD of the
solution to be zero. Prior to orientational averaging, the structure factor, F, as defined within the Born
approximation, for a single composite two-dimensional object is given by

Fe@ = [[ ot y) expli(Qux + Qp)ldsdy, M
yx
where p(x, y) is the SLD to be determined. The integration is over the entire volume of the object (both unknown
and reference parts) and the wavevector transfer Q and the position vector r are expressed in the object
coordinate system (x, y). We can write the composite structure factor F¢ as the sum of two parts, one for the
unknown part of the object and the other for the reference piece (this corresponds to the sum of two integrals,
each performed over the respective partial volume):

Fe(Q) = Fr(Q) + F5(Q), @)

where the subscripts ‘R’ and ‘S’ denote reference and unknown ‘sample of interest’ parts of the composite object.
In any scattering experiment, a scattered intensity is measured which is proportional to the complex square of
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the structure factor, which for a symmetric component Fg (Q) is given by
|Fc|* = |Fr|* + |Fs|* + 2 ReFg ReFs, (3)

since Fy is real for a symmetric reference. Because of the random orientations of the objects in dilute solution,
the expression in equation (3) must be averaged over the entire solid angle. Thus, denoting this orientational
average by (), we need

(IFcl?) = (IFRP?) + (IFsl*) + (2ReFg ReFs). 4)

Now suppose that, in principle at least, the reference part of the composite object could be replaced with a
piece of identical size and shape but with a different uniform SLD (one possible way is to use a ferromagnetic
reference part in conjunction with a polarized beam, as already mentioned). Two independent scattering
experiments could then be performed, one for an ensemble of composite objects with reference part ‘A’ and the
other with reference part ‘B>—the sample part of each object being the same (Fy for either A or B could also be
zero). The difference between the two data sets of scattered intensities thus collected is proportional to the
difference in the corresponding orientationally-averaged square of the composite structure factors. Defining this
difference function to be D(Q), the following relation can be written using equation (4):

D(Q) = (|Fcal*) — (IFcsl*) = (IFral®) — (|Frsl*) + 2(ReFraReFs) — 2(ReFgpReFs), (5

where the subscripts ‘RA” and ‘RB’ refer to the two different reference parts successively attached to the common
sample part of the composite scattering object. Since the composite system scattered intensities can be measured
and the reference quantities (| Fra |*) and (| Fga |*) can be computed, then the quantity

U(Q) = (ReFys ReFs) — (ReFyg ReFs) (6)

can be directly solved for. Equation (6) is an implicit equation for the desired ReFs that is embedded within the
orientational average as a product with the real part of the known quantities ReFrp and ReFg 4. In the special case
where ReFs is isotropic, it can be taken out of the orientational average and directly solved for. For the general
case, however, it is problematic to extract ReFs from the average in which it is embedded. Conventionally, in
small-angle scattering the quantity Fis defined to be the ‘form’ factor instead of the ‘structure’ factor used in
crystallography and as is adopted here.

In SAS, the rotationally averaged square of F is typically analyzed in terms of a radius of gyration. However,
ideally, ReFs itself is not what we are ultimately after but, rather, the function p,(r) of which Fs is the Fourier
transform. With the aid of a piece-wise continuous representation of g, (r) over a suitable mesh of cells, a set of
discrete element values defining p, (r) can be extracted, in principle, from the RHS of equation (6) through an
algebraic rearrangement of terms and subsequent solution of a set of linear, simultaneous equations. This is the
essential difference in the approach, as originally introduced in [8], that we are taking in the analysis of the SANS
data and are illustrating here with the two-dimensional example represented in figure 1. In this case, the
structure factor for the rectangular solid reference part of the object, Fy, centered on the composite object
coordinate system, is given by

Fp = / prexpli(Qxx 4+ Qyy)]dxdy = (4pr/QxQ,)sin (Q,D,)sin (Q,D,) = ReFy 7
rx

where the integration limits are from — D, to +D, and similarly in the y-direction. In the above expression, the
dimensions of the rectangular reference are 2D, and 2D, as indicated in figure 1. (The uniform SLD of the
reference, pg, has units of inverse length squared.)

The structure factor for the sample part of the object has a more complicated form, one which can describe
an arbitrary shape and SLD distribution, and is given by (where the integration limits are now from D, to
D, + Ldand analogously in the y—direction):

Fs= [ pe y)exp (Qu) exp Q) ddy. ®
yx

Explicit evaluation of the above expression for the 4-element square model of figure 1 gives

Fs= o7 [ ot pexp @unds + )77 plx, pexp (1Quxds | exp (i@, dy

Dy Dx x+d
Dy-+2d Dx+d . Dx+2d 3 .
+ ) [ I s pexp (iQeuxydx + [ plx, yrexp (IQXX)dx]eXp (iQyy)dy. ©
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Making explicit use of the finite element rendering of the sample part of the object, the equation immediately
above can be rewritten as

Dy+d Dx+d . . Dy-+d Dx+2d . .
Fs = prDy)’* [fDx + eXp(zQxx)dx] exp(iQyy)dy + leny” [j;)x; exp (1Qxx)dx] exp(iQyy)dy

Dy+d Dx Dy+d Dx+d

Dy-+2d Dx+d . . Dy-+2d Dx+2d
o f) [ exv Qe [essiamdy + o 3

exp (1Qx)dx | exp(iQ ),
(10)

where the p;; denote the constant values of SLD within the specific (i, j) finite element square. Then the real part
of F5 can be written, after performing the indicated integrations, as

ReFs = [4/(Q.Q))]sin(Q.d/2)sin(Q,d/2)
X {py; €08 [Qc(Dy + d/2) + Q,(Dy, + d/2)] + pyycos [Qu(Dx + d/2 + d) + Q,(D, + d/2)]
+ p1, €08 [Qx(Dy + d/2) + Qy(Dy + d/2 + d)] + py,cos [Qu(Dy + d/2 + d)
+Q,(D, +d/2 + d)]}.
(11)

Equation (6) can be written explicitly in terms of the angular average of all orientations 6 of the composite
object in two dimensions as

2T
UQ) = - f (ReFys — ReFyg)ReFsdf. (12)
2w Jo

Substituting the expressions for ReFgrs, ReFrg, and ReFs from equations (7) and (11), respectively, we obtain
2 2w 2T 27
U@ =py [ Wa@dd+ pyy [ Wa®)d0 + pyy [ W@l + pyy [ Wa)ds,  (13)

where the quantitites Wj; are functions of the angle 6 only. For instance, the explicit form of W;,(0) is

Wi(0) = [1/2m)][4(pra — pre) /(QxQy)]sin (QxDy) sin (Q,Dy)
X [4m/(Qx Q)] sin (Qxd/2) sin (Qyd/2) cos [Qx(Dx + d/2) + Q(Dy + d/2)]. (14)

The average over all composite orientations relative to the direction of an incident neutron wavevector is
equivalent to an average over all directions of wavevector transfer Q so that substituting Q, = Q cos(#) and
Q, = Q sin(P) allows the coefficients of the SLD values of the elemental squares of the unknown part of the
object to be directly computed. Defining the coefficients of the p;; as

2
Ci fo W;(0)do. (15)

With L and M elemental squares along the x- and y—axis respectively (see figure 1), we finally arrive at a system of
linear equations for LM unknowns p;; describing the finite element representation of the SLD distribution of the
unknown part of the composite object—with coefficients which can be calculated and values of the U(Q) which
can be determined from two independent scattering measurements

UQ) = p;Gi1(Q1) + 05,Co1(Q1) + p1,Ci2(Q1) + p,5,C2(Q1)
U(Q2) = p;1Gi(Q2) + p51Ca1(Q2) + p1,Gi2(Q2) + 02,C22(Q2)
U(Q3) = p11C11(Q3) + P21C21(Q2) + p12C12(Q3) + pzzCZZ(QS)
U(Qq) = p;1G1(Qq) + p2,C21(Q2) + p1,G2(Qs) + 045 Co2(Qy). (16)

As shown in detail in [8], the 2D solution outlined above to illustrate the basic concept of this particular
phase-sensitive method can be generalized to three dimensions and that a variety of different reference
structures can be employed, including, for example, ferromagnetic materials in conjunction with polarized
beams. In the main body of this paper we present the first experimental realization of this particular phase-
sensitive small-angle neutron scattering (PS-SANS) method on a simple test system consisting of magnetic iron
oxide particles (reference) with an unknown polymer shell (sample).

2. An initial application of the general method to a simpler spherically symmetric system

Our test system consists of a magnetic iron oxide (Fe;O,4) particle core and a polymer shell of unknown
composition and thickness. The magnetic core, with known radius Ry; and SLD py, serves as the reference for
PS-SANS and the sample with an SLD distribution to be determined is the nuclear scattering part of the core and
the polymer shell. The theoretical basis of PS-SANS is described in detail in Majkrzak et al [8] and illustrated in
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Figure 2. Finite element decomposition: the sample structure, which consists of an iron oxide core and a polymer shell, is described by
the SLD in a spherical core with radius R; and N — 1 concentric shells of varying thickness. Ry, is the radius of the magnetic reference.
The red concentric circles in the figure represent the FED. The sample is generally unknown and the FED dimensions do not
necessarily correspond to the sample dimensions. The relative sizes of features in the schematic drawing do not represent actual
dimensions of the sample or the FED used in the inversion. The area in the dashed square on the left part of the figure is enlarged in the
right part of the figure.

the 2D example above. Here we will employ the same formalism but with the simplifications that arise because of
the spherical symmetry of our system.

Assuming that the system is in the dilute solution limit the structure factor of one compound particle
(sample + reference) is given by equation (2). In a diffraction experiment, the intensity of the scattering from the
compound object will be proportional to | F¢ |>. Because of the spherical symmetry of sample and references no
orientational averaging is needed, and both Fs and Fy are real. The difference between the two measurements
will then be

D(Q)  |Fral* — |Frp|* 4+ 2(FraFs — FrpFs), (17)

where the subscripts A and B refer to the two measurements with different references. If the reference is a ferro-
or ferrimagnetic particle magnetized along some direction and two measurements are performed with neutron
polarization parallel and antiparallel to the magnetization respectively, then the same sample-reference system
can be used for the two measurements.

In our case the reference is a purely magnetic scatterer (the nuclear scattering of the particle core is
considered part of the sample) and Fy 5 and Fyg differ only in the sign of the (magnetic) SLD, so
Fra = —Fgrp = Frand consequently

D(Q) = 4FrFs = 2U(Q). (18)

The structure factor of the reference can be calculated and in our case it will be the familiar structure factor of
asphere with radius r = Ry The structure factor for a spherical particle with radius ris
Fspn(Qr) = 4wr3&, (19)
Qr
where j; is the spherical Bessel function of the first kind.

The unknown sample structure can be described by decomposing the continuous SLD distribution into a
finite number of elements. In the case of an asymmetric sample a regular grid of cubic elements of equal volume
would be an obvious choice. However, because of the spherical symmetry of our system the SLD only varies in
the radial direction and it is advantageous to describe the structure using a finite element decomposition (FED)
that reflects this symmetry. The FED we will use here is a homogeneous sphere with radius R; and a number of
concentric spherical shells of constant SLD as depicted in figure 2. The individual shells need not have the same
thickness (or volume) and furthermore, the magnetic and nuclear core does not need to have the same size
(R, = Ry in general). For an FED consisting of a spherical coreand N — 1 shells, the measured nuclear-
magnetic cross term can be described as

2d N
U = V—pMFsph(QRM)Z piEF(Q), (20)

tot ]‘:1

where ® is the volume fraction of core—shell particles in the solvent and Vi, is the total FED volume (47Ry; /3).
For the j’th element of the FED p;is the SLD and Fy(Q) is the structure factor, i.e., the first term, corresponding to
the core is simply

Fo1 = Epn(QRy) 2D
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and the remaining coefficients corresponding to the shells are
Fo;j = Fpn(QR)) — Epn(QRj_1) forj > 2, (22)

where R;is the outer radius of shell number j — 1.
If U(Q) is measured in N, Q-points, equation (20) is a linear system of N equations in N unknowns that can
conveniently be expressed as a matrix equation

U(Qy) GQ) - G (.~

(23)

UQxy) |G@Qxy)  Cv@Qu \on

Equation (23) can be solved for the unknown p;s using numerical methods. Here we use the pinv function in
MATLAB’ which uses a truncated singular value decomposition (SVD) to calculate a pseudoinverse of the
coefficient matrix. An advantage of this method is that a parameter tol can be chosen so that all singular values
smaller than tol are treated as zero. Choosing a suitable tol stabilizes the results because it effectively suppresses
experimental noise as well as round-off errors and other numerical artifacts. For comparison, results using QR-
decomposition (through MATLAB’s \ operator) are also briefly discussed.

2.1.Resolution smearing
When inverting experimental data it is necessary to take the finite Q—resolution of the instrument into account.
This is done by smearing each of the C; coefficients of equation (23) with the resolution function R(Q’, Q)

Cirameared (Q) = fo " R, QC(Q)dQ. 4)

The resolution function is well approximated by a normalized Gaussian with a ¢ that can be calculated for each
Q — point [10, 11]. Size polydispersity of the reference can be treated in exactly the same way as the instrumental
resolution, but with the resolution function replaced by the polydispersity function [12].

3. Sample characterization

The PrecisionMRX® core-shell particles for PS-SANS were produced by Imagion Biosystems for use in
magnetic relaxometry, an experimental technique for the diagnosis of cancer [13]. The particles consist of Fe;0,4
cores coated with a monolayer of oleic acid, a monolayer of amphiphilic polymer and a layer of polyethylene
glycol. The cores are produced with a diameter of 25 nm and a Gaussian size distribution with a polydispersity
smaller than 10% [14]. The uniformity in size and shape of the cores is confirmed by transmission electron
microscopy as seen in the image in figure 3. High-resolution transmission electron microscopy and powder
x-ray diffraction confirm that the cores consist of Fe;0, with no indications of other phases [14]. Magnetometry
data shows that the magnetization of the cores is almost fully saturated at an applied magnetic field of 100 mT
and reaches a saturation magnetization of about 70 Am?/kg Fe;O,4 [13—15] corresponding to 3.6 - 10> A/m
which is about 75% of the value for bulk magnetite.

The sample for PS-SANS experiments consisted of core—shell particles suspended in D,O at an Fe
concentration of 10 mg/mL corresponding to a volume fraction of 0.0019. For the experiment, approximately
0.8 mL of sample was filled in a standard 2 mm-path length titanium cell with quartz windows.

A sample of dry iron oxide cores was produced from oleic acid covered iron oxide cores suspended in H,O
by dripping it onto aluminum foil and allowing the solvent to evaporate. The drying resulted in a sticky powder
that was kept in the aluminum foil and used for polarization analysed SANS measurements (PASANS).

3.1. Polarization analysed SANS characterization of reference
To characterize the magnetic core to be used as reference in PS-SANS, a PASANS experiment was performed on
the sample of dried iron oxide cores. The measurements were performed at the NG7-SANS instrument at NIST
Center for Neutron Research (NCNR) using a polarized neutron beam and a polarized *He analyzer. The sample
was placed in zero applied field, except for the small guide field (2 mT) necessary to maintain the neutron
polarization.

With PASANS it is possible to separate the magnetic from the nuclear scattering, allowing us to characterize
the magnetic scattering of the particles. The magnetic and nuclear SANS data is shown in figure 4. The nuclear
signal is determined from the non-spin-flip scattering parallel to the applied field and the magnetic signal is

The identification of any commercial product or trade name does not imply endorsement or recommendation by the National Institute of
Standards and Technology.
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Figure 3. Transmission electron microscopy image of iron oxide particle cores. The scale bar is 25 nm.
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Figure 4. PASANS data from dried particle cores. The nuclear signal is determined from the non-spin-flip scattering wheras the

magnetic signal is determined from the spin-flip scattering and corresponds to the magnetization perpendicular to the guide field. The
full lines are fits to an FCC paracrystal model. The error bars represent one standard deviation.

determined from the spin-flip scattering perpendicular to the applied field and comes from the magnetization
perpendicular to the applied (guide) field. For more information about PASANS see [16—19].

Our main objective here is to characterize the magnetic scattering of the cores. The structure of the
individual particles can be extracted from the higher-Q part of the scattering while the scattering at low Q reflects
the packing of the powder. To take the packing of the particles into account both the nuclear and magnetic signal
was fitted to a face-centered-cubic (FCC) paracrystal model [20, 21] using the Sasview software [22]. The
scattering atlow-Q could not be captured satisfactorily with the FCC model, which indicates that the packing of
the particles is not perfectly described by the FCC structure. To obtain the optimal fit of the high-Q region only
theQ > 0.025 A" region of the magnetic signal was included in the fit. For the nuclear signal data with
Q > 0.01 A~ was included in the fit. In both cases the model represents the data well in the fitted Q-range and
captures the important features, such as the high-Q oscillations from the particle dimensions and the correlation
peakat Q ~ 0.023 A~! in the nuclear scattering,.
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Double-V Neutron Spin
Super Mirror Cavity Flipper Sample . i ;

Beam
stop

Detector

Figure 5. Experimental setup for polarized SANS. The T neutrons are selected by the double-V supermirror cavity and the polarization
is either left unchanged or rotated by 180° (flipped) depending on whether the neutron spin flipper is off or on. A guide field covers the
entire path from polarizer to sample and maintains the neutron polarization. The polarization of the scattered neutrons is not
analyzed.

Table 1. Structural- and magnetic particle sizes from
FCC paracrystal fits to PASANS data. The given
uncertainties represent one standard deviation.

Radius (nm) Polydispersity (%)

Nuclear 12.50(2) 4.6 (2)
Magnetic 11.8(2) 13.8(12)

The nuclear and magnetic particle sizes determined from the fits are given in table 1. The nuclear radius of
12.50 (2) nm corresponds exactly to the nominal 25 nm particle diameter and the 4.6 (2) % polydispersity
confirms the narrow size distribution. The magnetic size comes out smaller than the particle size with a radius of
11.8 (2) nm consistent with a 0.7 nm surface layer that is either magnetically disordered or has a different order
than the bulk of the particles. Magnetic disorder near the surface of magnetic nanoparticles has been proposed
by many authors as explanation of the reduced magnetization of magnetic nanoparticles compared to bulk
materials [23, 24], although direct experimental observations of the disordered layer are more scarce. At 13.8 %
the polydispersity of the magnetic size is significantly larger than the narrow size distribution of the particles.

There is some variation in the results obtained from analysis of the PASANS data, depending on how the
parameters are constrained, e.g., whether or not the FCC packing is required to be the same in the nuclear and
magnetic data. From these variations, we can deduce that the radius of the core is in the range 118-121 A witha
polydispersity in the range 0.12—0.15. The values given in table 1 are the ones giving the best fit.

4.PS-SANS experiment

The PS-SANS experiment was performed at the NG7-SANS instrument at NCNR using 5.5 A neutrons with a
wavelength spread of 11.5% (FWHM) and two different sample-detector distances of 4.547 m and 12.547 m,
resultingin a Q-range from 0.008 A~! t0 0.077 A~". The initial spin state was prepared as | or | bya polarizing
FeSi double-V supermirror and an electromagnetic spin-flipper. The sample was placed at room temperature in
an electromagnet producing a 100 mT magnetic field along the (horizontal) x-direction which is enough to
saturate the magnetization of the magnetically ordered core. Scattering of T and | neutrons were measured at
each detector distance for one hour resulting in a total of 4 h of measurement time. The experimental setup is
shown schematically in figure 5.

The nuclear-magnetic cross term U(Q) is obtained from the difference between scattering of T and |
neutrons in the y-direction, i.e.

Q) =1 — I (25)

I ; and I } are determined from area-normalized sector slices with opening angles +15° with respect to the
vertical direction.

Incoherent scattering and any nuclear scattering that is uncorrelated to the magnetism, e.g. solvent
scattering or scattering from excess polymer in the suspension, will scatter evenly in the T and | channels and will
thus automatically be subtracted when U(Q) is calculated. Consequently, the only data reduction that was done
consisted of masking out corrupted pixels near the edge of the detector, removing contaminated data points very
close to the beam stop, normalizing the intensities to the individual detector efficiencies, and scaling the data to
the sample transmission to obtain the intensity on an absolute scale. The data reduction was done using the Igor
Pro macros developed at NCNR [25]. The reduction software automatically computes the instrumental
resolution in each measured Q-point to be used for resolution smearing.
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Figure 6. Polarized SANS data on core—shell nanoparticles in D,O. Top panel: measured intensities in the y-direction for the two spin
states (note the logarithmic scale). The experimental uncertainty (standard deviation) is smaller than the size of the points. Bottom
panel: measured cross term. The error bars represent one standard deviation.

The measured polarized SANS data is displayed in figure 6. The top panel shows the measured cross sections

for T and | neutrons in the y-direction and the bottom panel shows the measured cross term U(Q).

5. Inversion of experimental data

5.1. Optimal resolution

The optimal spatial resolution, i.e., the smallest possible feature that can be distinguished in a diffraction
experiment, is limited by the largest scattering vector Q,,.x at which scattering is measured. When the phase is
known the relationship between Q.. and the finest lengthscale I that can be resolved is | ~ 7/Qp,.x and the

resolution is thus twice as good as in a conventional diffraction experiment where I &~ 27/Q .« [7]. With
Qmax = 0.077A " we should expect an ideal resolution of I ~ 4.1nm in our experiment.

5.2. Finite element decomposition

To invert the experimental data we have to select the elements with which to describe the sample structure, i.e.,
define the radii of the core and shells in the FED. An obvious choice would be R, = 12.5 nm so the core in the
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—3 . 107° A% isa guide for evaluating the SLD of the polymer shell. The outer radius of each shell is given in table 3.

FED corresponds to the known size of the particle cores. The thicknesses and number of shells in the FED should
be chosen so that they correspond to the assumed sample dimensions (shell thickness of a few nanometers) and
to the information content in the collected data.

To carry meaningful information the elements of the FED should not be finer than / = 4.1 nm. For the core
radius this requirement is 2R; 2> [ which is well met when R; = 12.5 nm, and for the shells the requirement is
similarly that 2¢; 2 I, where t;is the thickness of the j’th shell. Note that the requirement is that the diameter, not
the radius, of the feature to be resolved is larger than I. Consequently the shells in our FED should be no thinner
than approximately 2 nm.

If perfect data was collected for 0 < Q < Q. and the total sample diameter was L, then the maximal
number of free parameters in a model independent inversion could be quantified by the Nyqist number which
can be determined as the integer part of Q,,,., L/ 7. However, because the data is not perfect the actual number of
permissible free parameters in a model independent inversion could be smaller. For a given data set a suitable
FED can be determined by trial and error. A poor choice of FED will be reflected in artifacts like unrealistic
absolute values of the inverted SLDs or unphysical oscillations in the SLD profile.

5.3.Inverted SLD

The inversion was performed using a radius of 11.8 nm with 12.6% polydispersity for the reference. The reason
for using a polydispersity of 12.6% and not 13.8% was that it slightly improved the stability of the inversion
results. The used polydispersity is within one standard deviation of the result obtained with PASANS (see

table 1). A (magnetic) SLD of p,, = 1.46 - 10-¢ A~2, corresponding to a magnetization of 5.12 - 105 A/M

was used.

Examples of inverted SLD profiles are shown in figure 7. The inverted SLDs are given relative to the D,O
solvent. While the relative SLD expected for the iron oxide core is 0.59 - 107° A2 the polymer SLD is
unknown. Typical SLDs for hydrogenated polymers are close to the SLD of H,O or slightly higher (up to
~1.5 - 10~ A~2) while deuterated polymers have SLDs close to that of D,O [26, 27]. Depending on the degree of
hydrogen-deuterium substitution in the solvent and on swelling of solvent molecules into the shell we can expect
the SLD of the shell to be somewhere in between these values, i.e. between —6.94 - 10~ A~?and 0 relative to
D,0. The relevant SLDs are listed in table 2.

To resolve the structure of the polymer shell the inner shells are chosen to be thinnest and the outer shells
thickest. The four inverted SLD profiles in figure 7 represent different FEDs, with inner shell thicknesses (or
binnings) of 2 nm, 3 nm, 4 nm and 5 nm. The outer radii of each shell in the FEDs of figure 7 are shown in
table 3. In all cases it was necessary to have the sample volume (the FED) extend to approximately 60 nm to
obtain a reasonable inversion. For all four binning choices the SLD of the iron oxide core is reproduced
reasonably well with an average core SLD 0f 0.67 (4) -10-° A2, where the uncertainty is the deviation of the
values determined with the four different binnings. In the first shell the SLD falls to ~—3 -10~° A 2inall cases,
indicating the change in the SLD from iron oxide to polymer. The SLD then increases first rather abruptly and
then more gradually as it approaches the point of zero contrast (solvent).

To verify that the inverted SLDs are in fact a solution to equation (23), U(Q) was calculated from the inverted
SLDs and with the corresponding FED. This is shown in figure 8 for the inversion with 2 nm binning. The
inverted U(Q) agrees well with the experimental, indicating a good solution. The results for the other binning
choices are virtually indistinguishable.
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Table 2. Expected SLDs for the sample constituents. The
SLD for iron oxide (Fe;0,) is estimated assuming a
density of 5.2 gcm ™', The SLD of the polymer is expected
to be between that of H,O and D,O.

p(107°A7?) P = Ppyo(107°A7)
D,O 6.38 0
H,0 —0.56 ~6.94
Fe;0, 6.97 0.59
Polymer —0.56t0 6.98 —6.94t00

Table 3. Finite element decompositions (shell binnings) corresponding to
the inverted SLDs in figure 7.

2 nm bins 3 nm bins 4 nm bins 5 nm bins

R, (nm) 12.5 12.5 12.5 12.5
R, (nm) 14.5 15.5 16.5 17.5
R; (nm) 16.5 18.5 20.5 225
R, (nm) 18.5 21.5 24.5 27.5
R5(nm) 22.5 24.5 30.0 32.5
R, (nm) 30.0 30.0 40.0 40.0
R, (nm) 40.0 40.0 50.0 50.0
Rg (nm) 50.0 50.0 60.0 60.0
Ry (nm) 60.0 60.0

Apart from relatively small differences in the exact size of the SLD the results obtained with the different
binnings agree quite well. This shows that the results are robust with respect to changes in FED aslong as a
reasonable number of parameters is chosen. In our case it turned out that the maximum number of parameters
in the FED was somewhere between 9 and 11 (8—10 shells). If more shells were used artificial oscillations
appeared in the SLD profiles. A binning size of only 1 nm was also tried and while the results to some extent agree
with the SLD profiles in figure 7, the results were very susceptible to small changes in the binning choices and the
results were considered unreliable.

An SVD tolerance of tol = 10" was chosen for the inversions presented here. In most cases tol = 10* and
tol = 0 gave the same results. In the latter case the precision of the SVD inversion is determined by the machine
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epsilon (roundoff-error). The only exception was the inversion with a 2 nm binning, where tol = 0lead to
oscillations in the inverted SLD profile. We also performed the inversion using QR decomposition which gave
results identical or very similar to those obtained using SVD.

5.4. Sensitivity to changes in magnetic structure

PS-SANS is highly sensitive to subtle magnetic changes, such as from sample aging. As illustration, we show the
comparative measurements from our nanoparticles solvated in D,0O shortly after their synthesis and 40 days
later. Except for a global reduction in intensity of 33%, the predominantly structural scattering obtained from
unpolarized SANS looks indistinguishable in shape (figure 9(a)). This means that apart from the probable
precipitation of some particles from solution, the structural morphology and particle-to-particle distribution/
agglomeration remains unaltered.

The nuclear-magnetic cross-term, however, shows pronounced differences (figure 9(b)). A uniform
reduction in magnetic SLD across the magnetic cores would lead to a simple scaling reduction between the fresh
and aged particles, which is not supported by experimental data in which the scattering difference is most
pronounced atlow-Q. Instead, the change can be qualitatively modeled by a reduction in magnetic core size,
which could occur if aging reduces the magnetization per volume primarily at the Fe;0, surface of the
nanoparticles.

A simulation of single-particle, 12.5 nm Fe;O,4 cores with a 4.0 nm thick polymer shell residing in D,O with
either 12.0 nm or 11.3 nm magnetic cores is shown in figure 9(c). The D,0 and Fe;O, SLDs are set equal to bulk
material values, while the polymer shell set 1.35 - 106 A~2, As evidenced by the dotted vertical line at 0.006 A ™"
in figures 9(b)—(c), this reduction in magnetic core size can explain the low-Q divergence in scattering profiles
between the fresh and aged samples, while maintaining close agreement in scattering profiles at higher Q. Itis
also apparent that the samples in both cases are not single-particle since the low-Q turnover from single-particle
simulation is lacking in the data.

The point here is not to rigorously fit the aged data, but rather to demonstrate that PS-SANS can be used to
detect magnetic differences between samples which would be challenging to detect with conventional SANS.

6. Discussion

Inversion of the PS-SANS data results in an SLD profile that corresponds well to that expected for the core—shell
nanoparticles. The inverted core SLD of 0.67 (4) -10~° A %is12% larger than expected for iron oxide.
Furthermore, a magnetic SLD of 1.46 - 107° A2 corresponding to the saturation magnetization of bulk Fe;O,
was used in the inversion and not the lower magnetization expected for the nanoparticles. The expected
magnetic SLD is thus 75% of the value used in the inversion, and accordingly the inverted SLDs should be
rescaled by a factor of 1.33 giving a larger deviation from the expected SLD of iron oxide (almost 50%). This
relatively large discrepancy can be explained by inaccuracies in the particle concentration (¢), or in the
determined size or polydispersity of the reference. Considering that our method is model free and employs no
scaling we consider it a success that we reproduce the iron oxide SLD so closely.

The SLD profile drops to a contrast of about —3 - 107° A %and tapers off towards zero consistent with a
well defined polymer shell extending approximately 4 nm from the core and a more loosely associated structure
extending to about 40 nm (27.5 nm from the core). The inversion was only successful when the SLD profile was
extended to about 60 nm or longer, indicating structural correlations significantly longer than the expected shell
thickness.

The change in the nuclear-magnetic cross term for the samples aged for 40 days shows that the technique is
very sensitive to changes in the magnetic structure of the reference. This shows that measuring the magnetic
cross term can be used to study magnetic details that does not produce any significant change in the unpolarized
scattering pattern. Furthermore, it shows that having a well characterized reference is of crucial importance for
the PS-SANS method to work.

To test the limits of the method, inversion of simulated scattering data was also performed. The data was
simulated with realistic experimental conditions (Q-range, resolution smearing, statistical noise) and with
sample parameters that resemble the expected structure of the core—shell nanoparticles used in the experiment.
The results of the simulations are summarized in appendix. The inverted simulated data demonstrates that an
SLD profile almost perfectly matching the input values is obtained if the chosen FED corresponds to the sample
structure and that even if this is not the case, i.e., if the sample SLD varies within one FED element, the overall
structural features are still correctly reproduced (see figure A2 top).

In recent conventional SANS studies of samples similar to the ones studied here [28] it was found that the
core—shell particles tended to form two-particle aggregates (dimers). Therefore scattering from dimers was
simulated in the same way as the isolated particles. Inversion of the simulated dimer scattering produced
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Figure 9. (a) Predominantly structural scattering from unpolarized SANS and (b) nuclear-magnetic cross-term taken from polarized
scattering perpendicular to the applied magnetic field, where the scattering of the aged sample has been uniformly multiplied by a
factor of 1.3. The inset in (a) emphasizes the close agreement in the predominantly structural scattering, where the oscillation in data
points arises from an overlap in detector distances. (c) Simulation of single nanoparticles differing only in magnetic core size (but not
structural core size). The dotted vertical line in (b, c) shows the lowest Q point common to both data sets for ease of comparison
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unreasonable results unless the inverted spatial range was extended to approximately 60 nm, exactly as for the
experimental data. This is a strong indication that dimer formation is happening in the sample and that the
correlation from the reference to the structure of the neighboring particle is responsible for the slow decrease in
SLD contrast from polymer to solvent in the 2220—-40 nm range. This illustrates that the method is sensitive to
even weak correlations and highlights the need for good samples with minimal interparticle interactions.

Inversion of experimental data was performed successfully with four different choices of FED, giving overall
consistent SLD profiles for all choices. This shows that the exact details of the FED is not so important, as long as
the FED is within the limits of the experimental Q-range and not too coarse to represent the sample structure.
The fact that the inversion works with the 2 nm bin size shows that we do obtain a resolution that is better than
what could be obtained by conventional SANS by a factor of two.

Nanoscale core—shell particles with a magnetic core and a nonmagnetic shell are relevant for applications in
electronics and biomedicine, such as permanent magnets, magnetic hyperthermia and thermally assisted drug
delivery. Although the internal structure of such systems is important for their intended function it is difficult to
determine the internal structure with conventional methods [29-33]. Our study shows that it is possible to
successfully obtain phase sensitive information about the structure of a core—shell system consisting of a
magnetic nanoparticle with polymer coating.

The most important difference between PS-SANS and conventional SANS techniques is that; (i)
Conventional unpolarized SANS can give information about the orientationally averaged, model dependent
shape (e.g., radius of gyration) and chemical composition of a macromolecular object of interest (ii) Polarized
SANS can additionally give this information about ferromagnetic components. (iii) PS-SANS can give
information about model independent shape and composition of a macromolecular object of interest without
orientationally averaging via the use of a known attached reference structure. Orientationally averaging is of
course only relevant for samples without spherical symmetry, and while core—shell structures are of considerable
interest, our method can only be considered a modest success until it is used to determine the three dimensional
structure of macromolecules in solution. This could potentially be of great importance, especially for proteins
that cannot be crystallized and for determining differences between crystallized and in-solution structures, but
this cannot be realized using a single spherical reference particle attached to the sample.

To obtain a full three dimensional structure of a molecule one could either use asymmetric reference
particles or attach multiple references to the molecule. The references have to be rigidly attached with (nearly)
identical position and orientation with respect to the sample structure and it is thus not a simple matter to
realize. Therefore the next step could be to use, e.g., rod-shapes particles that do not have spherical symmetry or
to tag a molecule with multiple spherical references at known sites.

Finally, we should mention that phase sensitive SANS can be achieved without the combination of magnetic
nanoparticles and polarized neutrons. For example, instead of effectively changing the magnetic SLD of the
reference by changing the neutron polarization, one could conceivably use a non-magnetic reference, such asa
very well determined molecule. If scattering of the compound sample-reference could be measured, as well as
the scattering of the sample on its own and of the reference on its own, the sample structure factor amplitude and
phase could be retrieved. However, such an experiment would have the disadvantage that the sample may be
changed between measurements with and without reference.

7. Conclusions

We have successfully performed the first experimental realization of the particular phase-sensitive small-angle
neutron scattering method originally described theoretically in [8] using, for this specific test case, a magnetic
reference particle in conjunction with polarized beams. Our results demonstrate the feasibility of the method by
recovering the structure of an iron-oxide-core polymer-shell particle. We demonstrate that the method is robust
and gives structural information with a resolution that is better than expected from a conventional SANS
experiment. Our experiments also demonstrate the sensitivity of the method and the importance of the
preparation of high quality samples. Our method is directly applicable to magnetic core—shell nanoparticle
systems and could be extended to three dimensional structure determination of macromolecules in solution by
using anisotropic reference particles.
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Appendix. Inversion of simulated scattering data

To test the validity of the results of inverting the experimental data and to study the effect of the choice of FED
inversions were also performed on simulated scattering data from a core—shell structure. The simulations were
performed using the experimental Q-range and resolution smearing as well as statistical noise. The sample
parameters for the simulations were chosen to be comparable to those expected for the sample with a volume
fraction of = 0.002, core radius of 12.5 nm, shell thickness of 5 nm, and SLDs of 0.56 - 10~° A 2and

—3.0 - 107 A2 relative to the solvent, for the core and shell respectively. The reference was given a radius of
12 nm with 10% polydispersity and a magnetic SLD of 1.46 -10-6 A2,

Conventional SANS investigations of samples similar to the ones studied here indicate that the particles may
form two-particle aggregates (dimers) in the suspension [28]. To see how this would effect the inversion
experiment we simulated both scattering of isolated core—shell particles and dimers of core—shell particles. In the
simulations of the dimers the separation between the two particles was equal to one core—shell radius at 35 nm,
i.e., the two particles are touching. Orientational averaging was performed for a random average orientation of
the dimers.

The simulated difference function U(Q) is plotted in figure A1 for both the single particles and the dimers
along with the experimental data for comparison. Interestingly, the shape of the U(Q) experimental curve seems
to be better represented by the dimer simulation than by the single particle simulation, indicating that dimer
formation might indeed be happening and that it changes U(Q) significantly.

The SLDs were obtained from the simulated U(Q) using equation (23). For the simulated single particle
model the inversion was not very sensitive to the choice of binning and a core—shell structure with dimensions
and SLDs close to the input parameters was always recovered. In figure A2 (top) the inverted SLD profile for the
single particle is shown for three different FEDs. The one labeled ‘commensurate’ has a FED with only three
elements that exactly correspond to the simulated structure, i.e., R; = 12.5nm, R, = 17.5 nm, and
R; = 25 nm, where the truncation of the last shell corresponding to the solvent is arbitrary. The FED labeled
‘incommensurate’ has one element corresponding to the core, one entirely inside the shell, one that is partly in
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the shell and partly in the solvent as well as one entirely in the solvent. Inversion with the commensurate FED
exactly reproduces the input SLD. The incommensurate FED results in an SLD of —3.2 - 10~¢ A %forthe part
that corresponds to the shell (input SLD of —3.0 - 107° A% and —1.29 - 10° A % for the part corresponds
partly to shell and partly to solvent, where the expected SLD would be —1.21 - 107° A~ (calculated from the
volume fraction inside and outside the shell). The inversion labeled ‘fine’ in the figure has an FED with 1 nm thin
elements in the shell region and represents the input SLDs extremely well.

When the simulated dimer scattering was inverted using the same FEDs as for the isolated particles the
resulting SLDs differed from the input values by more than an order of magnitude. To get the inversion to
produce reasonable SLD values the FEDs had to be extended to a radius of approximately 60 nm, exactly as was
the case for inversion of the experimental data. The SLD profile from inversion of the simulated dimer scattering
(lower panel of figure A2) resembles that of the sample (figure 7) indicating that the nonzero SLD beyond the
immediate shell can likely be attributed to correlation to neighboring particles. The sketch in figure A3 illustrates
that the SLD distribution of a dimer as seen from one of the particles as reference resembles the results from our
inverted experimental data.
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